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Second quantisation of the nonlinear Schrodinger equation 

B Davies 
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Canberra ACT 2600, Australia 

Received 8 December 1980, in final form 27 March 1981 

Abstract. The classical nonlinear Schrodinger equation may be solved using the inverse 
scattering transform, but there are difficulties in carrying this over to the case of quantum 
fields. These difficulties are overcome by explicitly constructing a Fock space represen- 
tation of the states, together with quantum fields properly defined over this space. 

1. Introduction 

In the last few years there have been a number of papers concerned with the exact 
second quantisation of the nonlinear Schrodinger equation (NLSE) using ideas which 
have emerged from the ‘inverse scattering transform’ (IST) method (Creamer et a1 1980, 
Kaup 1975, Thacker 1978, Thacker and Wilkinson 1979, Sklyanin 1979, Sklyanin and 
Faddeev 1979, Sklyanin eta1 1980). This method of solving a large class of nonlinear 
partial differential equations has been widely investigated and is still the subject of 
intense research activity. (Many references may be found in Barut (1978).) Two of the 
classical problems which fall under the ambit of IST are the nonlinear Schrodinger 
equation and the sine-Gordon equation. These are both of great interest as quantum 
field equations, and it is no coincidence that the eigenvalues and eigenstates of both 
problems have been constructed by the Bethe algorithm (Bergknoff and Thacker 1979, 
McGuire 1964, Yang 1967, 1968), which seems to have some connection with IST 
(Bergknoff and Thacker 1979, Thacker and Wilkinson 1979). 

The earliest paper on the exact quantisation of the NLSE (Kaup 1975) took the 
viewpoint that IST provides a canonical transformation of the original Hamiltonian 
system, for which the equation of motion is nonlinear, to a new set of canonical variables 
in which the system is a collection of non-interacting harmonic oscillators. For the 
continuous spectrum this provides the correct energy levels, although it is shown below 
that it does not lead to the correct Hamiltonian operator in terms of the basic 
‘independent particle’ state operators. For the soliton spectrum, canonical quantisation 
using Kaup’s method leads to the wrong energy levels, as Kaup observed by comparing 
his spectrum with the explicit results of McGuire (1964). Apart from Kaup’s work, the 
methods of IST have been applied to the NLSE in a direct way, and although this shows 
the obvious promise of the method for quantum field problems, there are some severe 
difficulties, which were the subject of an earlier paper (Davies 1981). In the present 
paper these problems are overcome by constructing a Fock space representation using 
the methods of Glimm and Jaffe (1968, 1970a, b). This is done indirectly, via the 
MarEenko equation, since it is easier to represent a set of ‘independent particle’ 
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operators (which satisfy a linear equation but non-canonical quantisation relations) 
rather than the original quantum fields. The latter are defined by an iteration of the 
MarEenko equation, and it is shown that they obey the correct equations of motion and 
commutation relations. However, it is also shown that there are some surprises, in that 
the 'independent particle' operators behave more like fermion operators than boson 
operators. The present paper is restricted to the NLSE: investigations for the SG 
equation are under way, and the results will be published later. 

2. Key classical results 

The nonlinear Schrodinger equation (in one space dimension) is 

iCJt = -axx + ~c '~cJ / ' cJ .  (2.1) 

Solutions of this equation may be found by a number of methods which are all related to 
IST. Since there are numerous papers on this subject, the only formulae which are 
included here are those which are directly relevant to the question of second quan- 
tisation. In this respect the MarEenko equation is of central importance: for the solution 
of the nonlinear Schrodinger equation it takes the form 

m 

K(x, y )  = R ( 7 )  x + y  +:[I ' ds dtR*( 2 x + s + t  )K(x, t )R( r> .  S + Y  (2.2) 
0 

Here the function R (x) is a solution of the linear differential equation 

iR, = -Rxx (2.3) 

which is the linearised version of the NLSE. In the original IST method, R(x )  is 
constructed from the scattering data. Once the solution of the MarEenko equation has 
been found using a given R(x) ,  it follows that a solution of the original nonlinear 
equation is given by 

@(x) = K(x, x). (2.4) 

Ablowitz et a1 (1980) have observed that there is no need to appeal to the IST method 
and the associated Zakharov-Shabat equations in order to construct the function R (x): 
in fact, equation (2.3) together with some very mild restrictions on the asymptotic forrn 
of R(x)  is sufficient to guarantee that the MarEenko equation has a solution and that 
(2.4) is a solution of the NLSE. 

It is convenient for the purpose of introducing a Fock space representation of the 
quantum fields to deal with Fourier transforms. On writing 

4 r m  

@ ( x )  ='J dk eikx 4 ( k )  2 7  -m 

and 
I r m  

(2.5) 

R ( x ) = l  J dk eikxp(k)  
2 7  -m 
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it is possible to rewrite equations (2.1) and (2.3) as 

-m 

and 

ipt(k) = k 2 p ( k )  (2.8) 
respectively. The MarEenko equation may also be written in Fourier-transform form; 
this is not done here as there is no need to second quantise the field K(x,  y )  as a 
preliminary to quantising @ ( x ) .  The more direct approach is to solve (2.2) by iteration 
as a power series in the coupling constant. This was first done by Rosales (1978) using a 
direct iterative approach; in either case it leads to the expansions 

and 
I r m  

x s ( k + & +  . . . +&-[I- . . . -tn+l) 

These relations are of central importance in this paper. 
In making the transition to quantum fields, questions regarding operator ordering 

are crucial. The appropriate definitions will have to be made in such a way that the 
quantum field satisfies equation (2.7), and it is necessary to know how this comes about 
in the classical case. Rosales' method (adapted to the present context) is useful here. On 
substituting the expansions for 4 ( k )  into equation (2.7), the terms may be grouped in 
ascending powers of c2, The terms in cZn from the linear part of the equation are simply 

(2.11) 
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The nonlinear part of the equation gives many terms, each of the form 

2C2n I dkl dkz del . . . d&, d l l  . . . dll Icl  (2?T)2n+1 

where 

11+ 1 2 + 1 3  = n - 1. 

(2.12) 

(2.13) 

On performing the integrals over kl and k2, and carrying out the following relabelling: 

(2.14) 

this term becomes almost identical with (2.11). The only difference is that insteadof the 
factor 

(51 * - t~,,ti * 5;2+1,6; * ti:) + (51 * * t n ) ,  

(51 - l11+1,5; . * l1,,51" * 5 % + 1 ) +  (51, * ln+l), 

However, the sum of these factors over all partitions satisfying (2.13) is simply the 
negative of (2.15), so that the expansion (2.9) satisfies the nonlinear Schrodinger 
equation to every order of cz. This result is no surprise once one knows of IST; what is 
important is that the relabelling (2.14) is imposed by the algebra and it contains 
essential information regarding the ordering of operators in Fock space. 

3. Fock space representation 

Field quantisation is most readily effected by introducing a Fock representation, using 
the beautifully clear notation of Glimm and Jaffe (1970a). An element in this Fock 
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space H is an infinite sequence 

($0, $l(kl) ,  ’ , $n(kl, a .  * , k”), e .  .I (3.1) 
where $“(kl, . . . , k,) is a symmetric function of its variables. The basic operators which 
act in the space are p ( k )  and p + ( k ) .  In terms of the scattering data a ( k )  and b ( k )  of IST, 
they are given by 

p ( k )  = b * ( k ) / a * ( k > ,  P + ( W  = b ( k ) / a ( k ) ,  (3.2) 

when the convention of Creamer et a1 (1980) is used to write p + ( k )  as the creation 
operator. These authors give the commutation relations as 

P ( k ) P ( k ‘ )  = W’, k ) P ( k ‘ ) P ( k ) ,  (3.3) 

p ( k ) p + ( k ’ ) = S ( k ,  k’)p+(k’)p(k)+2~S(k -k’), (3.4) 

~ ( k ,  k ’ ) = ( k  -k‘-ic2)/(k-kf+ic2). (3.5) 

It might be thought that these relations could be obtained by first calculating the 
classical Poisson brackets and then making the appropriate identification with quantum 
commutators. There is no difficulty with the first step (Zakharov and Manakov 1975): 
the result is 

p ( k ’ ) ) =  -Pc2/(k - k ’ ) l p ( k ) p ( k ’ ) ,  
(3.6) 

Provided that k # k’ ,  this gives the correct commutation relations; however, there is no 
way of obtaining the correct form of (3.4) from (3.6) in the neighbourhood of k = k’. 
Indeed, in this neighbourhood, the operators have the commutation relations 

(~(k), p * ( k ’ ) ) =  [ 2 c 2 / ( k  -k ’ ) ]p (k )p* (k f ) -2 r r is (k  - k’). 

(3.7) 

which are appropriate for fermions. An examination of the work of McGuire (1964) on 
the exact solution of the n -particle Schrodinger equation with delta function interaction 
shows that this surprising result is correct. In fact, he showed that the n -particle states 
are uniquely labelled by n quantum numbers which may be chosen independently 
except that no two may coincide. Moreover, he showed that, while the c -* 0 limit does 
not exist, for c + 00 the solution varies continuously toward the solution of a non- 
interacting fermion problem. 

Returning to the actual representation of the commutation relations in Fock space, 
an examination of known results for the effect of the operators on the n-particle Bethe 
eigenstates suggests that the appropriate form is 

j = l  
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It is customary to refer to p(k)  and pC(k) as operators, and we shall adhere to that usage. 
However, p+(k) is certainly not an operator in the strict sense of mapping a subspace of 
H into another subspace. It is, however, a perfectly well defined distribution on a 
suitable nuclear subspace of H. A convenient choice for this nuclear subspace is the 
set of finite sequences of functions, each function being a test function of fast decrease in 
its n variables (Gelfand and Shilov 1964, Gelfand and Vilenkin 1964). 

The weights f(k, k’) are readily determined. First, note that there is no loss of 
generality involved in using f*(k, k’) in (3.9): it is necessary in order to ensure that the 
relation 

(3.10) 

holds. It is readily checked that (3.8) and (3.9) will reproduce the commutation 
relations (3.3) and (3.4) only if 

If(k k’)l= 1, f(k,  k’)lf(k’, k )  = S(k, k’). (3.11) 

(49 p(k)+) = (P+(k)4, +)* 

The unique solution of these conditions is 

f(k, k’) = exp[iB(k - k’)] (3.12) 

where 

B(k - k’) = tan-’[& - k’)/c2], osesV.  (3.13) 

Returning to the earlier discussion of the choice of commutation relations, it is 
interesting to note that equations (3.3), (3.8) and (3.9) suffice to determine (3,11), 
removing all freedom in choosing (3.4). This is interesting in its own right, since (3.3) 
can be found by the ‘Poisson bracket-commutator’ argument, whereas (3 -4) cannot. 

Quantum fields may now be defined in an unambiguous way. First, the unbounded 
operators R ( x )  and R + ( x )  are defined as 

1 
R ( x ) = -  J d[eirxp([), 2V -a 

(3.14) 

(3.15) 

It is interesting to observe the effect of R+(x)  on the vacuum vector, which will be 
denoted by +o throughout the following. A simple inductive argument shows that 

(R’(x,) .  . . R+(xd+o)n(ki,. I I ,  k,) 

= ( 2 ~ ) - ” / ’ ( n  !)-‘I* 1 exp[-i(k,,xl + . . . + k,.~,,)] 
P[nl 

x n exp[-iO(k, - k,)] 
i>j 

(3.16) 

where P[n] is a permutation of the integers 1, . . . , n. These functions are identical with 
the Bethe eigenstates for the corresponding n -particle Schrodinger equation with one 
exception: they are correctly normalised, whereas the usual Bethe eigenstates are not. 
Thus the results which emerge from the representation (3.8)-(3.9) are not identical with 
those obtained by Creamer et a1 (1980), although the differences are not great. 
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For any test function f(x), the bounded operators R ( f )  and R + ( f )  are 

.( .m 

(3.17) 

(3.18) 

where f is the Fourier transform of f .  The fields R ( f )  and R'(f) have, for a minimum 
common domain of definition, the nuclear subspace R of finite sequences of test 
functions. Furthermore, the effect of polynomials of the creation operators acting on 
the vacuum vector is readily calculated as 

(R+(fri) * * * R+(fl)SO),(kl, * * * , kfl) 

This is a set of functions dense in H, so the fields are complete and the vacuum vector 
cyclic (Bogolubov et a1 1975). 

4. The quantum fields @(x) and &(k) 

The fields which were constructed in the previous section are pertinent to the MarEenko 
equation rather than the original NLSE. However, they may be substituted into the 
formulae (2.9) and (2.10) in order to define the quantum fields @(x) and q5(k). It is 
apparent from the commutation relations (3.3) and (3.4) that this must be done very 
carefully, since the basic annihilation and creation operators p ( k )  and p + ( k )  do not 
commute among themselves. Although the considerations of 0 2 were restricted to 
classical fields, the orderings given in equations (2.9) and (2.10) are those which give rise 
to the desired results. The main purpose of the remainder of this paper is to prove this 
assertion: certainly it cannot be taken for granted simply because the MarEenko 
equation solves the classical NLSE. 

The immediate task is to check that the quantum fields @(x) and @+(x) satisfy the 
canonical commutation relations 

or 

This is necessary because (3.3) and (3.4) were introduced as a postulate, not deduced 
from the canonical commutation relations. 

It is readily shown that 

@ + ( X ) S O  = R+(x)r//o; (4.5) 
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furthermore, it is shown in the Appendix that 

@ + ( X ) R + ( X ' )  = R + ( X ' ) @ ( X )  ( x  < X I ) .  

From these two relations it follows by an inductive argument that 

(4.6) 

which are equivalent to the commutation relations (4.1) and (4.3) respectively, since the 
vacuum vector is cyclic. Similarly, it is shown in the Appendix that 

which implies the commutation relations (4.2) and (4.4). One of the remarkable 
features of the manipulations which lead to these results is the way in which hor- 
rendously complicated algebraic expressions simplify. While it is true that the fields 
R ( x )  satisfy an uncomplicated linear equation of motion (2.3), this is at the expense of 
introducing rather complicated commutation relations (3.3) and (3.4). 

5. Normal ordered polynomials 

It is apparent from the commutation relations (3.3) and (3.4) that the definition of 
normal ordering of polynomials in @ ( x )  and @ + ( x )  must be made very carefully when 
equation (2.9) is used, since the operators p ( k )  and p ( k ' )  do not commute, even though 
@(x) and @(x') do. The appropriate choice is to require that the normal ordering should 
preserve the original order of each of the two kinds of operator p ( k )  and p + ( k ) ,  except 
for placing all creation operators to the left of annihilation operators. For example, 

:P + ( 5 1 ) P  (52)P+(&)P (51): = P+(51)PC(52)P+(53)P (52)P ( 5 1 ) .  ( 5  * 1) 

Using this procedure, normal ordered polynomials of the quantum fields may be 
defined. An important case is 

and this may be written in terms of p ( k )  and p + ( k )  by substituting equation (2.10) and 
then normal ordering every term in the resulting expansion. With this definition, the 
arguments embodied in equations (2.11)-(2.16) carry through to the second quantised 
form and the quantum fields satisfy the NLSE. 
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Conserved quantities are of great interest in the classical field case, in particular the 
normalisation, momentum and energy functionals: 

N = dx @ + ( x ) @ ( x ) ,  I (5.3) 

P = -i dx @+(X)@~(X) ,  J (5.4) 

These functionals may be expressed in terms of the new canonical variables provided by 
IST as (Kaup 1975) 

N = 2 7 ~  dk ln[l +p+(k)p(k)], 'I 
1 

dk k ln[l+p+(k)p(k)],  (5.7) 

dk k 2  ln[l +p+(k)p(k)],  (5 .8 )  21T 

and it may be shown that H is the'Hamiltonian for the classical NLSE. 

field in the obvious manner. For example, equations (3.8) and (3.9) show that 
It is immediately evident that equations (5.6)-(5.8) do not carry over to the quantum 

= 5 dkS(k  - ki)&(k,, kl, . . . , ki-1, ki+l, . . . , k,) 
i = l  

so that R'(x)R(x) is the number operator, whereas (5.6) suggests that ln[ l+ 
R'(x)R ( x ) ]  is the number operator. Similarly, 

J dk k"(p'(k)p(k)rL),(kl,. . . , k,) = f kYrL,(kl,. . . , kfl)s (5.10) 
21T i = l  

so that the Hamiltonian operator has to be 

1 
H = 2 7 ~  J dk  k2pc(k)p(k) (5.11) 

since the energy levels of the Bethe eigenstates are Z k:. This operator, although not 
bounded over the entire Hilbert space H, is certainly bounded over all but two of the 
infinite sequence of subspaces which come from completing R in the countable 
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sequence of norms (Gelfand and Vilenkin 1964) 

Although the identification of (5.11) with the normal ordered form of ( 5 . 5 )  has been 
made here on the basis of comparing the known spectra of the two operators, a direct 
proof of the equivalence of these two operators over 0 may be written out using 
equation (2.7) and the results of § 4. Alternatively, one may observe that 

= k 2 p ( k )  

= ipr(k) 

from which it follows, by substituting into equation (2.9), that 

(5.13) 

(5.14) 

Thus H generates the correct equation of motion for the field operators. 

6 .  Conclusions 

It is interesting to recall the results of Glimm and Jaffe (1970a, b) for the relativistic 44  
theory in one space dimension. Their proof of the existence of a Hilbert space in which 
the renormalised Hamiltonian and field operators are properly defined, with a unique 
vacuum state, covers more than 60 pages in addition to using other theorems which they 
published separately. They commence by setting up a Fock space realisation of the 
commutation relations (4.7) and (4.8) in conjunction with the linearised equation of 
motion: this space is totally inadequate once the interaction is included, and their 
constructions involve taking inductive limits. The main result of the present paper is to 
construct a simple Fock space representation of a Hilbert space suitable for the full 
nonlinear problem. The enormous difference between this space and a Hilbert space 
which is suitable for the linearised problem is seen by comparing the commutation 
relations (3.7)-which are closer to anticommutation relations-with (4.1)-(4.2). This 
also gives a clue as to why there are difficulties with the direct use of IST for a quantum 
field. The Zakharov-Shabat equations are (Zakharov and Shabat 1975) 

(6.1) 

and from these all of the necessary dynamical variables are defined. However, for 
quantum fields, the problem arises that l/l and v i  act in Hilbert spaces with totally 
different structures. Certainly it is not adequate simply to state that the fields are 
operators and then proceed as though they had a workable common domain of 
definition. 

Investigations are under way to obtain similar results to the above for the sine- 
Gordon equation, which is also soluble classically using IST. The quantum SG equation, 
for bosons, is known to be equivalent to the massive Thirring model for fermions: 

1 v l X  - i iSvl=  icuZl/l, vZx +&v2 = -ic+*ul, 
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moreover, this latter model has recently been exactly diagonalised by Bergknoff and 
Thacker (1979) using the Bethe ansatz. All of these facts point to the probability that 
the present methods will shed considerable light on both of these problems. 

Appendix 

To show that 

consider the general term which results from substituting the expansion (2.9) for @ ' ( x )  
in the left-hand side, namely 

"" I d e l . .  . d&+1 d l l  . . . dln  d[ 
(2*)2n+2 

x exp[-i(& + . . . +&+I  - l1 - . . . - l n ) x  - i&'] 

(A21 

In order to bring this to the form of the right-hand side it is necessary to commute the 
operator ~ ~ ( 5 )  through all of the operators p(lj). This gives a term involving S ( l j  -6) 
for each j ,  and one more term in wnich p + ( [ )  survives. Explicitly, this last term is 

X ~'(61) p + ( t n + i ) p ( l n )  * p(fl)p+([) 
(61 -(I -ie)(l1- 5 2  +ie)  . . ( t n  - l n  -i&)(ln - [ n + l +  ie)' 

C Z n  

(21r)2n+2 I d5  d&l -  * dtn+l d l l .  * dln 

x exp[-itx'-i({i + . . . + &+i  - l1 - . , . - l n ) x ]  

x S(5, t1) * * * S(S, &+l)S( l l ,O - * S ( l n ,  5 )  

while the terms which involve delta functions are 

C Z n  I d510 * dtni-1 d l i - .  dln de  (2 

~exp[ - i (&+ . . . +&+l - f l -  . . . -fn)x-i&'] 

x s ( l 1 , O  * * s( l j -1 ,OS(f i - t )  

(A4) X ~+(51)  * * p+(tn+l)p(ln) * * * p(lj+l)p(lj-1) - ~(51)  
(51 - f i  - iE)(f1- 6 2  + ie) . ( t n  - l n  -iE)(Sn - S n + i +  is)' 

Equation (A3) differs from the corresponding term of the right-hand side of (Al )  only 
through the factor S ( &  &) . . . S ( &  &+l)S(l l ,  6) . , , S(ln,  5 ) .  In order to compensate for 
this difference, it is necessary to combine (A3) (with n reduced to n - 1 so that there are 
n + l  creation operators and n annihilation operators) with the terms (A4) for j =  
1, . . . , n. Equation (A4) must therefore be brought to the same order, with the creation 
operator associated with x '  to the left of all the other operators. Also, it is necessary to 
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integrate out the variables 6 and lj which no longer label operators, using the formula 

For each j ,  there are two terms, namely 
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The second form of each of these expressions is the result of further relabelling of 
variables aimed at making the ensuing algebra easier. Taking the term with j = n from 
(A6) and (A7) and combining with (A3)-the latter with n replaced by n - 1-leads to 
the following weight factor: 
C2n-2  

ZnS(5, 51) * * S(6, 5n-1)S(51, E )  * * * s ( t - 1 ,  5) 
(2.rr) 

Combining now with the j = n - 1 term gives 

and, continuing in this way, the j = 1 term gives the desired result, namely 

6 - l1 + ic2 ic2(11 - 11) ic + 
5 - 51 (5 - 5d5  - 51) 5-51 

Thus the identity (Al)  is proved to each order in the expansion in powers of c. One of 
the remarkable features of this algebra is that it depends on ordering the operators in 
p ( x )  and p ' ( x )  in precisely the manner indicated in equation (2.9). For example, it may 
be readily checked that (Al )  is invalid if the annihilation operators are written in the 
reverse order. 

To prove (4.15) it is convenient first to prove that, if f ( x )  is of bounded support, then 

W W + ( x n )  * * R+(xl)$o 

= [ f ( ~ n ) + R + ( x n ) I ~ ( f ) ~ + ( x n - t )  * * R+(xl)+o ( x ,  > Xn-1 > . . . > X I )  

( A l l )  
from which the result follows immediately by induction. Substituting the expansion 
(2.9) for @ ( x ) ,  the lowest-order term on the left-hand side of ( A l l )  is 
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these terms, it is necessary to split up the integral in (A12) into the regions x > x, and 
x C xz' In the first region, the inequalities xn > x,-l  > . . . >XI, together with the fact 
that f is an entire function of exponentially bounded growth in its imaginary part, 
guarantee that every term is zero. In the region x < x,, the integral (A5) may be used as 
before, and this part of @(f) commutes with R'(x,) to complete the demonstration of 
(A1 1). 
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